1. Около трапеции описана окружность. Периметр трапеции равен 38, средняя линия равна 11. Найдите боковую сторону трапеции.
2. Цилиндр и конус имеют общие основание и высоту. Объем конуса равен 25. Найдите объем цилиндра.
Поскольку и основание, и высота у цилиндра и вписанного в него конуса одинаковые, объем цилиндра в три раза больше объема конуса, т. е. равен 75.
3. В соревнованиях по толканию ядра участвуют спортсмены их 4 стран: 5 из Чехии, 4 из Словакии, 8 из Австрии и 8 из Швейцарии. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, выступающий первым, окажется из Чехии.
В нашей задаче исходы испытаний (результаты жеребьевки) равновероятны, число n совпадает с общим количеством спортсменов: \(n=5+4+8+8=25\), \(m\) совпадает с количеством спортсменов из Чехии: \(m=5\). Соответственно, $$P=\dfrac{5}{25}=\dfrac{1}{5}=0,2.$$
4. Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,6. Найдите вероятность того, что биатлонист первые два раза попал в мишени, а последние три промахнулся. Результат округлите до сотых.
5. Найдите корень уравнения: \(3^{x-5}=81.\)
6. Найдите значение выражения: $$\dfrac{\log_{6}22}{\log_{6}11}+ \log_{11}{5,5}. $$
7. На рисунке изображен график функции \( y=f(x)\). На оси абсцисс отмечено девять точек: \(x_1, x_2, x_3 , x_4, x_5, x_6, x_7, x_8, x_9 \). В ответе укажите количество точек (из отмеченных), в которых производная функции \( y=f(x)\) отрицательна.
8. Для получения на экране увеличенного изображения лампочки в лаборатории используется собирающая линза главным фокусным расстоянием \( f= \) 30 см. Расстояние \(d_1 \) от линзы до лампочки может изменяться в пределах от 30 до 50 см, а расстояние \(d_2 \) от линзы до экрана – в пределах от 150 до 180 см. Изображение на экране будет чётким, если выполнено соотношение $$ \dfrac{1}{d_1}+ \dfrac{1}{d_2} = \dfrac{1}{f}. $$ Укажите, на каком наименьшем расстоянии от линзы можно поместить лампочку, чтобы её изображение на экране было чётким. Ответ выразите в сантиметрах.
9. Первая труба пропускает на 5 литров воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает вторая труба, если резервуар объемом 375 литров она заполняет на 10 минут быстрее, чем первая труба заполняет резервуар объемом 500 литров?
10. На рисунке изображены графики функций \(f(x)=ax^2+bx+c \quad\) и \(g(x)=kx+d \), которые пересекаются в точках A и B. Найдите абсциссу точки B.
11. Найдите наибольшее значение функции \( f(x)=3x-2x\sqrt{x}\) на отрезке [0; 4].
$$f'(x)=(3x-2 \cdot x^\tfrac{3}{2})’=3-2 \cdot\dfrac{3}{2} \cdot x^\tfrac{1}{2}=3-3\sqrt{x},$$ $$f'(x)=0, \quad 3-3\sqrt{x}=0, \quad \sqrt{x}=1, \quad x=1.$$ Мы установили, что единственная точка экстремума функции \(f(x) \) принадлежит отрезку [0; 4]. Выяснить, является точка \(x=1 \) точкой минимума или точкой максимума можно, исследовав знаки производной. Но для ответа на вопрос задания этого делать не обязательно: достаточно определить значения функции в точках \(x=0, \: \: x=1, \: \: x=4 \: \) и выбрать наибольшее из них. $$f(0)=0, \quad f(1)=3-2=1, \quad f(4)=3 \cdot 4-2 \cdot 4 \cdot 2=-4.$$ Очевидно, что наибольшее значение функции достигается в точке экстремума \(x=1 \) (а следовательно, это точка максимума) и оно равно \(1 \).
Приведенный вариант реального ЕГЭ-2023 по профильной математике (1 июня 2023 года) собран сайтом yagubov.ru. Продолжение — разбор второй части — следует.